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Tumor Secreted AMF: Causal Role in an Animal Model of Cachexia 

INTRODUCTION: 

Update on cancer cachexia, August 2003. Cancer cachexia has three clinical features 
(Fearon & Moses, 2002; Tisdale, 2002): 1) loss of appetite (anorexia), which probably has a 
central nervous system component, 2) nutritional mal-absorption, and 3) muscle and fet wasting 
caused by tumor-stimulated factors (Kotler, 2000; Tisdale, 2000). This application focuses on the 
3^^ component. A number effectors have been proposed to cause cancer cachexia (Matthys & 
Billiau, 1997; Tisdale, 1998). The^e fall into two classes: primary ones produced by the cancer 
cells themselves and secondary ones, which are inflammatory fectors released by the host in 
response to the tumor. The existence of tumor-produced factors has been long known QSforton et 
al, 1985), but few such factors have been identified at the molecular level. In addition, cachexia 
is typical of AIDS, rheumatoid arthritis (Roubenoff et al, 1992), and other diseases, as well as 
cancer. Despite extensive characterization of cytokine involvement in cachexia, progress in 
treatment of cancer cachexia has been limited (Argiles et al, 2001; Nelson, 2000), and treatments 
aimed at inhibiting the actions of host-produced inflammatory mediators have not been widely 
successfiil (von Haehling et al, 2002; Inui, 2002). Lack of progress in the area is unfortunate, 
given the tremendous benefit patients with advanced cancer would receive fi-om effective 
treatment of cachexia to improve their quality of life and postpone mortality. 

Biochemical mechanisms of cachexia have been explored in vivo and in vitro. Lipid 
wasting (Kalra & Tigas, 2002), changes in the insulin-like growth factor pathways (Crown et aL, 
2002), and alterations in appetite and caloric balance (Schwartz & Morton, 2002) all contribute 
to cancer cachexia. However, muscle wasting is the facet which is currently best understood 
(Tisdale, 2001), as well as being amenable to scientific study and, potentially, to therapeutic 
intervention. The severe skeletal muscle wasting characteristic of cancer cachexia appears to be 
due to activation of proteasomal degradation of structural proteins in muscle (Hasslegren & 
Fisher, 2001; Whitehouse et al, 2001: Giordano et al, 2003). Less understood are the primary 
fectors released by tumor cells responsible for initiating the muscle wasting, but progress in the 
last several years has identified several candidates: proteolysis-inducing factor (PIF), a sulfated 
polypeptide isolated fi-om urine of cachectic patients (Cabal-Manzano et al, 2001; Lorite et al, 
2001), and myostatin (Zimmers et al, 2002). 

In addition, the osteolytic factor PTHrP causes cachexia when systemically elevated. 
However, this is accompanied by humoral hypercalcemia of malignancy (Guise et al, 1992; 
Guise et al, 1996; Guise & Mundy, 1998), and there may be direct cachectic effects of PTHrP on 
the kidney, independent of hypercalcemia (Iguchi et al, 2001). Complicating the role of PTHrP 
is its contribution to osteolytic bone metastases by breast cancer. The MDA-MB-231 cell line 
causes PTHrP-dependent bone metastases (Guise et al, 1996). Animals with bone metastases due 
to this tumor become profoundly cachectic but without significant increases in circulating 
concentrations of PTHrP (Yin et al,1999). Recent work also implicates cachectic effects on 



mitochondria by activation of uncoupling proteins (UCPs), especially UCP-3, which results in 
ATP energy wasting (Tisdale, 2002; Glass, 2003). 

Role of the proteasome. Skeletal muscle proteolysis in cachexia is probably due to 
increased activity through the proteasomal pathway, rather than via lysosomes or soluble 
sarcoplasmic proteases Lazarus et al, 1999). It has recently been observed that certain cancer 
treatment protocols can either enhance (Tohgo et al, 2002) or inhibit this muscle degradation 
(Tilignac et al, 2002) pathway. Thus, cancer chemotherapy may alter cachexia in patients. 
Omega-3 fatty acids and other eicosanoids can regulate the activity of the proteasome 
(Whitehouse et al, 2001), providing a biochemical rationale for the dietary treatment of cancer 
cachexia (Ross & Fearon, 2002; Jho et al, 2002). It is not yet clear that activation of proteasomal 
degradation is the central or the only pathway for muscle wasting in cancer cachexia (Hasslegren 
et al, 2002; Jagoe & Goldberg, 2001; Glass, 2003; Lecker, 2003). In addition to their effects on 
the proteasome, ©-3 fatty acids decrease expression of ras, AP-1, and cycloxygenase-2 
(Hardman, 2002). 

BODY OF PROGRESS REPORT 

Timetable: The award of this grant was made just as the Principal Investigator was 
moving from the University of Texas to the University of Virginia. Initial work was commenced 
upon arrival in Charlottesville Virginia in October 2002. A new research associate was recruited 
to work on this project, Ms. Lisa Wessner, who is an experienced molecular biologist. She has 
learned all of the techniques specific to the project, which has been ftilly active since 
approximately January 1 of the current year. Thus, this progress report represents work carried 
out over a seven-month period. All animal procedures are now in place and approved by the 
insitution (an extremely slow process). 

The revised application contained 3 Specific Aims and 9 Tasks in the revised Approved 
Statement of Work. 

Under Aiml, Task 1 is complete and Task 2 is underway. Our initial data (Table 1) 
showed that Alzet minipvunps did not achieve useful increases in steady-state blood 
concentrations of mouse PGI/AMF, even when the pumps were loaded with lOmg/ml protein 
solution. However, initial experiments (Figure 1), demonstrate that a simpler approach 
successfully gave substantially increased steady-state blood concentrations of mouse PGI/AMF. 
In this experimental protocol, animals were given the factor as sterile intraperitoneal (i.p.) 
injections of protein in PBS at 8 AM, noon, and 4 PM. Blood levels of PGI/AMF were measured 
at the 4PM time. Figure 1 indicates that the injected AMF/PGI was entirely cleared from the 
blood stream by 24 hours. In this experiment, there was a decrease in body mass consistent with 
a significant cachectic effect of the injected factor. This response is equivalent to that seen by the 
Tisdale group in their experiments with PIF, a sulfated peptide purified from urine of cachectic 
animals (Todorov et al, 1997; Lorite et al, 1998). When injected into animals the peptide 
reproduced cachexia. No cDNA sequence for PIF has been published, but a commercial patent 
(Akerblom & Murry, 1998) describes a cDNA, which includes the reported N-terminal sequence 
of PIF (Todorov et al, 1997). This sequence does not give any significant matches in the present 
Genbank database of human and mouse sequences when subjected to a BLAST search 
(Chirgwin, unpublished), suggesting that PIF/HCAP may be produced by an opportunistic 



microorganism. Chlamydial infection, for example, may contribute to cachexia in patients with 
AIDS, and in general patients with cachexia are immunocompromised. Recent works shows that 
PIF can activate, through NF-6B, endothelial cell expression of IL-6 and IL-8 (Watchom et al, 
2002), the later of which is produced by breast cancer cells and can directly enhance bone 
metastases (Bendre et al, 2002). 

On the basis of the initial results, shown in Figure 1, the remaining experiments for 
Tasks 2,4, 7 and 8 will be carried out by direct i.p. injection of recombitiant protein 3X per day. 
An initial ejq)eriment to study clearance of a single injection of purified protein (Figure 2) 
suggests that between 10 and lOOug/ injection should be sufficient, which would be at least 5X 
less than the amomt used in Figure 1. We are presently determining the minimum effective dose 
to give progressive weight loss accompanied by increased steady-state blood concentrations. As 
soon as this is determined, we will test whether the number of doses (presently 9 = 3/day x 3 
days) can be decreased. This modified approach eliminates the need for animal surgery to 
implant minipumps and permits the experiments to be of one week or less duration. The number 
of animals remains unchanged. The results also indicate that expensive Balb/c nude/nude mice 
are not needed for the cachectic response. 

Tasks 3 and 4 have not been initiated. 
Tasks 5 and 6 have been started. The catalytically inactive mutant E357A has been 

constructed, expressed and purified. The role of isomerase (PGI) activity in relation to autocrine 
motility factor (AMF) activity remains a central controversy in the field, with two papers 
reporting AMF activity as a property of bacterial PGI (Sun et al, 1999; Chou et al, 2000). In 
addition PGI catalytic activity has been suggested to be essential to AMF cytokine activity. 
These experiments involved adding PGI active site inhibitors at mM concentrations into 
bioassays, in which the AMF/PGI factor was added at nM concentration. The million-fold excess 
of inhibitor over factor could easily have resulted in non-specific inhibitory effects (e.g., Lagana 
et al, 2000). In fact, more recent experiments have suggested the opposite (Tsutsumi et al, 
2003). Much of the AMF cytokine work has not taken into account the current knowledge of 
PGI structure. We (Davies et al, 2003) and others (Arsenieva & Jefferey, 2002), have shown that 
ligand binding to mammalian PGIs results in only very small conformational changes in the 
surfece of the protein away from the active site (where binding to the AMF receptor ahnost 
certainly takes place). 

In Task 6, we have encountered a substantial obstacle. The recombinant proteins upon 
which all of the experiments in the proposal rely are expressed in the bacterium Escherichia coli. 
Gram negative bacteria are a prime source of inflammatory endotoxins collectively called 
lipopolysaccharides (LPS). We have assayed all of our AMF/PGI preparations with an 
endotoxin assay kit using amoebocyte lysates fi-om Sigma Chemical Co (St. Louis). By this assay 
all of our preparations were LPS-firee. However, the standard curves with the Sigma kit gave 
inconsistent results, and we have switched to a parallel assay fi-om BioWhittaker, CA). By this 
assay, our preparations (such as that used in the supplied preliminary data) were not LPS-fi-ee, 
although the level of contamination was that considered by other investigators to be 
relativelylow (Bausinger et al, 2002). LPS contamination has been realized to cause cytokine- 
like artifactual responses in mammalian cells treated with bacterially expressed proteins (Gao & 
Tsan, 2003; Bausinger et al, 2002; Colangeli et al, 1998; Ozaki et al, 1989). 

Preparation of LPS-free AMF/PGI. We have tested several different types of metal 
chelates resins for purification of His6-tagged protein. Standard NiNTA agarose gives material 
that appears substantially pure by Laemmli gel with Coomassie blue staining (Figure 3). The 



columns yielded AMF/PGI preparations with equivalent amounts of LPS contamination. 
Addition of washing steps with nondenaturing detergents, such as sodiiun deoxycholate or triton 
X-100 was also ineffective. A published procedure for this purpose, involving washing the 
column with cold isopropanol (Kees et al, 2000) was totally unsatisfactory. The isopropanol 
interferes with the column flow and was entirely vw^thout effect on reduction of the endotoxin 
contamination of the eluted protein. We have been successful in removing LPS from AMF/PGI 
preparations by adding a second chromatography step of passing the purified protein in PBS over 
a column of immobilized polymyxin B (Detoxigel, Pierce Chemical Co). Polymyxin B is a 
cyclic oligopeptide antibiotic effective against gram-negative bacteria; it binds bacterial 
lippolysaccharides with high affinity. The Detoxigel step results in loss of almost all of the 
applied AMF/PGI and we have been able to purify only about Img of protein in this manner. 
Prior to Detoxigel chromatography the contamination of AMF-PGI was 1.34 parts per million 
(ppm) on a weight per weight basis, using the conversion fector of 11.U. of endotoxin = 83 pg 
(Kees et al, 2000). After chromatography, the contamination was 0.079 ppm, representing a 60- 
fold purification. The material prior to Detoxigel purification contains 901.U./mg of AMF-PGI, 
while 601.U./mg is defined as low endotoxin contamination of r(hu)hsp 70, which lacks activity 
on monocytes in vitro (Bausinger et al, 2002). 

We have tested our most highly purified AMF-PGI in chemotaxis assays with two mouse 
monocyte/macfophage cell lines. The data shown in Figure 4 , show that the material was 
entirely negative in these two assays. These experiments were conducted in collaboration with 
Prof Lynda Bonewald, University of Missouri Kansas City School of Dentistry. 

We are currently testing two fiirther strategies: 1) initial binding to and washing of 
AMF/PGI to the Ni-NTA agarose afiSnity chromatography resin in the presence of soluble 
polymyxin B to dissociate the contaminating LPS from the resin-bound AMF/PGI; 2) active-site 
afiSnity chromatography as originally described by Phillips et al (1976). The active site of the 
protein binds to washed phosphoceUulose and specific elution is accomplished with glucose 6- 
phosphate substrate. We vdll also test whether combining 1) and 2) is effective. We believe that 
this is an important problem to solve. Unrealized LPS contamination has resulted in major 
published artifacts with other proteins. We suspect that the AMF activity reported for bacterial 
PGI (Sim et al, 1999; Chou et al, 2000) is probably due to LPS contamination, a possibility 
supported by recent, more carefiol work (Amraei & Nabi, 2002), which has invalidated the earlier 
conclusions. 

We believe that the additional work proposed within this task could have general 
applicability for the field of biological activity of bacterially-expressed proteins. If the new 
purification steps are not successfiil, we will use the inefficient approach of Detoxigel 
chromatographt or of injection of less pure AMF/PGI which has been mixed with sterile USP- 
grade polymixin B (Sigma). 

An in vitro model of muscle wasting was recently described by Gomes-Marcondes et al 
(2002) have described, in which PIF directly stimulates the hydrolysis of radiolabeled muscle 
protein from the myoblast/myotube cell Une C2C12 in vitro. This model provides an efficient 
system for biochemical assay of circulating factors which act directly on muscle cells. The 
C2C12 cell line progresses through a skeletal muscle differentiation program in vitro. A mediator 
of this process is MyoD, which is in turn regulated by the transcription factor NF-6B. The 
cachectic cytokines TNF" and IFN-( may cause muscle wasting by suppressing MyoD 
expression (Guttridge et al, 2000) in C2C12 cells. PIF can regulates transcription via NF-6B and 



STAT2 (Watchom et al, 2001) while the activity of NF-6B is regulated by the proteasome 
(Langen et al, 2001). The factor also plays a central role in multiple myeloma (Berenson et al, 
2001; Hideshima et al, 2002). Suppression of NF-6B attenuates cachexia and metastasis in 
several mouse tumor models (Arlt & Schafer, 2002). Thus the NF-6B transcription factor may 
also be a target for anti-cachexia treatments, v^hile itself being one of the mediators of the actions 
of proteasome inhibitors (Mitch & Price, 2000; Adams, 2001; Tisdale, 2002a). 

We have attempted to replicate the Gomes-Marcondes model, although using IL-6 as an 
inducer of cellular proteolysis, since PIP is unavailable. We conclude that the model is probably 
acceptable as a means of analyzing responses in vitro to factors which stimulate muscle wasting 
in vivo. However, the model is technically unsatisfactory, hispection of the original paper reveals 
large statistical errors, v^th large n values of 8 or greater needed to achieve statistical 
significance with small changes in total protein. We believe the model can be substantially 
improved by analyzing protein wasting by a more traditional analysis using trichloracetic acid 
precipitation to distinguish high molecular weight labeled protein jfrom the soluble oligopeptides 
released by stimulated proteolysis. Similar approaches have been applied by other to C2C12 
protein degradation (Taylor et al, 2001; Thompson et al, 1996; Fernandez & Sainz^ 1997), 
although not in the context of assaying cachectic factors. 

This is a supplemental experiment within task 2. If successful, the methodology would 
permit analysis of muscle-targeting cachectic factors in vitro, decreasing the future need for 
animal experiments. 

KEY RESEARCH ACCOMPLISHMENTS: 

1) Animal model of direct i.p. injection of AMF/PGI established. 
2) Preliminary validation of central hypothesis obtained: Injected AMF/PGI caused progressive 
weight loss of 10% over the course of 4 days in individual mice. 
3) Mutant mouse AMF/PGI constructed, expressed, and purified 
4) Unsuspected contamination of AMF/PGI with inflammatory bacterial endotoxin detected. 
Improved purification protocol under development. 
5) Crystal structure of mammalian AMF/PGI with active-site-bound ligand solved and published. 

REPORTABLE OUTCOMES: 

One manuscript published: 

Davies C, Muirhead H, Chirgwin J (2003). The structure of human phosphoglucose isomerase 
complexed with a transition-state analogue. Acta Crystallogr D Biol Crystallogr 59:1111-1113 

Four manuscripts in press accepted for publication which include reviews of the contributions of 
bone metastases to cancer cachexia:. 

Chirgwin JM, Guise TA. Role of TGFb in osteolytic bone metastases. Clin Orthop, in press, 
2003. 

Chirgwin JM, Guise TA. Bisphosphonates in prostate cancer bone metastases. Semin Oncol, in 
press, 2003. 



Chirgwin JM, Guise TA. Molecular mechanisms of cancer metastases to bone. Curr Opin 
Orthop, in press, 2003. 

Guise TA, Chirgwin JM. Biology of bone metastases. Chapter in Diseases of the Breast, 3rd 
edition. Harris, Lippman, Morrow, and Osbome (eds). Lippincott Williams & Wilkins, accepted 
for publication, 2003. 

CONCLUSIONS 

Purified mouse autocrine motility factor/phosphoglucose isomerase was found to cause weight 
loss (cachexia) after 3 days of 3X daily intraperitoneal injection, which was accompanied by 
significant increases in serum concentrations of the factor. This is a simpler animal model than 
originally proposed. Thus the main hypothesis of the original proposal appears to be correct. 
Progress m the first (partial) year is on track, despite relocation of the laboratory from University 
of Texas to University of Virginia. Statistical validation of the initial animal model observations 
will be carried out in year 02 

Structure of the protein complexed with inhibitor has been solved by x-ray crystallography and 
published. Mutant forms of the protein have been prepared. Experiments are underway to 
improve the purity of the recombinant protein and to characterize the effects of the factor on both 
mtact animals and on a mouse muscle cell line in vitro. 
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LEGENDS TO TABLE AND FIGURES 

Table 1. Animals were implanted under anesthesia with osmotic minpumps as described in the 
original proposal. Pumps were loaded with 1 or 10 mg/ml sterile AMF/PGI stock in PBS. At 4 
PM each day AMF/PGI was assayed on 10 ul of serum obtained from a retro-orbital blood 
sample obtained under anesthesia. Numbers immediately below the animal weights in g in each 
box are the raw PGI catalytic rate values. The results indicate that the minipumps failed to give 
significant increases in the serum concentrations of AMF/PGI, compared to those seen in 
patients with bone metastases or cachexia (Bodansky, 1954). 

Figure 1. In the ejq)erimental protocol, animals were given the factor as sterile intraperitoneal 
(i.p.) injections of protein in PBS at 8 AM, noon, and 4 PM. Blood levels of PGI/AMF were 
measured at the 4 PM time. Animals were weighed at the indicated times. Animals were injected 
on days 1, 2, and 3. 

f 

Figure 2. Protocol was similar to that described imder Figure 1. Mice received a single bolus 
i.p. injection of mouse AMF/PGI. 50 ul aliquots of blood were obtained retro-orbitally imder 
anesthesia at the indicated times and assayed for PGI activity in 10 ul of senrai. 

Figure 3. Equivalent aliquots of column fractions of effluent from a Qiagen NiNTA colvmm 
loaded with the cleared supernatant of E coli BL21DE3 pLysS cells treated with iPTG to induce 
expression of mouse PGI-H6 as described in the original proposal. 12.5% denaturing SDS 
Laemmli gel stained with Coomassie blue R250 and photographed with Kodak ED AS digital gel 
documentation syytem. Samples boiled with 2-mercaptoethanol reducing agent. Major band is 
the correct size for the anticipated subunit of 66 kDa. 

Figure 4. Chemotaxis assays. RAW 264.7 and MOPC-5 are standard mouse 
monocyte/macrophage cell lines from the ATCC. Positive control, last lane of each panel, is 
media conditioned by the mouse osteocyte cell line ML0-Y4, developed by the collaborator in 
these experiments. Dr. Lynda Bonewald, University of Missouri Kansas City School of 
Dentistry. 
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DayO 

Day 1 

Day 2 

Day 3 

Day 4 

Day? 

8/13/02 Mouse AMF Pump Experiment 

Pumps: Hold ~ 0.2 mL, delivery ~ luL/hour 

/louse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5 
PBS Img/ml Img/ml lOmg/ml lOmg/ml 
NC VC BC LC RC 

34.95g 31.94g 40.25g 34.60g 32.50g 

33.60g 
0.1884A/min 

31.80g 
0.1207A/min 

39.30g 
0.0719A/miii 

35.55g 
0.2799A/min 

31.45g 
0.2304A/min 

33.74g 
0.1341A/min 

32.33g 
hemolysed 

40.00g 
hemolysed 

34.60g 
0.2346A/min 

31.81g 
hemolysed 

33.13g 
0.1983A/min 

32.50g 
0.1712A/min 

39.63g 
0.0759A/min 

34.30g 
0.1486A/min 

32.30g 
0.1426A/min 
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33.12g 
0.1136A/min 

38.76g 
0.0712A/min 

35.30g 
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32.65gg 
0.2345A/min 

33.80g 
0.1129A/min 

33.27g 
0.1256A/min 

39.75g 
0.0750A/min 

33.70g 
0.2244A/min 

32.40g 
0.2822A/min 
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1. Introduction 

Phosphoglucose isomerase (EC 5.3.1.9) is a 
workhorse enzyme of sugar metabolism. It 
catalyses the second step of glycolysis, the 
interconversion of glucose 6-phosphate (G6P) 
and fructose 6-phosphate (F6P), by transfer of 
a proton between the C2 position of G6P and 
Cl of F6P (Rose, 1975). Recent crystal struc- 
tures of the enzyme have led to proposals that 
Glu357 is the active-site base responsible for 
this transfer (Lee et al, 2001; Read et al., 2001) 
and that either His388 or Lys518 catalyses the 
ring-opening of the sugar substrate (Davies & 
Muirhead, 2003; Lee et al., 2001). The human 
enzyme is of medical interest because muta- 
tions in this enzyme lead to non-spherocytic 
haemolytic anaemia (Baughan et al., 1968) and 
because high levels of PGI activity are 
measured in the sera of patients with certain 
cancers (Baumann etai, 1990). 

Interest in PGI has grown following the 
discoveries that it manifests cytokine function 
in a wide variety of cellular activities (Gurney 
et al., 1986; Watanabe et al., 1996; Xu et al., 
1996) and appears to be an antigen in rheu- 
matoid arthritis (Matsumoto et al., 1999) and 
sperm agglutination (Yakirevich & Naot, 
2000). To what extent the enzymatic properties 
of PGI overlap with its cytokine functions 
remains unclear. 

Here, we present the crystal structure of 
human PGI bound to a transition-state 
analogue, 5-phosphoarabinonate (PAB), 
solved at 2.5 A resolution. Along with 
equivalent structures obtained from pig and 
rabbit sources (Davies & Muirhead, 2002; 
Jeffery et al., 2001), it supports the hypothesis 

that Glu357 is the base catalyst in the reaction 
mechanism. 

2. Experimental 

Human PGI was purified and crystallized as 
described previously (Read et al., 2001) except 
that 5 mM PAB was included in the protein 
drops. The resulting crystals were of the same 
morphology as native crystals but diffracted 
X-rays less well. After stabiUzation in a solu- 
tion containing 2.1 M ammonium sulfate, 
100 mMTris-HCl pH 8.5 and 30% glycerol, the 
crystals were flash-frozen to 100 K. Data 
were collected with an R-AXIS IV" detector 
positioned at a crystal-to-detector distance of 
160 mm and mounted on an RU3-HBR X-ray 
generator (Rigaku-MSC) fitted with Osmic 
mirror optics. The crystals belonged to space 
group P432i2, with unit-cell parameters 
a = b = 94.4, c = 137.1 A. A total of 173 frames 
were collected in 0.5° oscillations to ensure 
high redundancy, with an exposure time of 
5 min per frame. The data were processed 
using d*TREK (Pflugrath, 1999). The starting 
model for refinement was the 1.6 A resolution 
structure of human PGI (Read et al., 2001) 
from which a bound sulfate and all waters 
molecules had been removed. After initial 
refinement using X-PLOR (Brtinger, 1992), 
both 2QFa\ - \F,\) and (|F„| - |F,|) electron- 
density maps clearly showed the PAB molecule 
bound at the active site. After a molecule PAB 
was fitted to the density, subsequent rounds of 
refinement used REFMAC (Murshudov et al., 
1997). The final model is numbered 1-555 and 
includes one PAB molecule, six sulfate mole- 
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Table 1 
X-ray diffraction data and refinement statistics. 

Values in parentheses are for the outer resolution shell. 

Data collection 
Resolution range (A) 50-2.5 

(2.59-2.5) 
«„crg=t (%) 12.8 (25.4) 
Redundancy 6.9 (6.8) 
Completeness (%) 98.4 (99.8) 
WicW) 5.7 (3.1) 

Refinement 
Resolution range (A) 50.0-2.5 
a cutoff applied 0.0 
Total No. of reflections 21468 
Reflections used in R„„ (%) 5.0 
No. of non-H protein atoms 4424 
No. of sulfate molecules 6 
No. of water molecules 109 
R factor (%) 21.7 
RwoA (%) 21.4 

Ru.. (%) 26.8 
R.m.s. deviations from ideal stereochemistry 

Bond lengths (A) 0.011 
Bond angles (°) 1.48 

B factors (A^) 
Overall B factor 25.16 
Mean B factor (main chain) 24.55 
R.m.s. deviation in main-chain B factor 0.390 
Mean B factor (side chains and wateis) 25.72 
R.m.s. deviation in side-chain B factors 1.454 

Ramachandran plot statistics (%) 
Residues in most favoured region 88.8 
Residues in additionally allowed regions 10.8 
Residues in generously allowed regions 0.4 
Residues in disallowed regions 0.0 

t ftm=,j= = EIA-4.I/EA. where /, is the intensity of the 
measured reflection and /„, is the mean intensity of all 
symmetry-related reflections. 

cules (arising from the crystallization solu- 
tion) and 109 water molecules. The data- 
collection and refinement statistics are 
shown in Table 1. 

3. Results and discussion 

3.1. Structure description 

PGI has been solved from a variety of 
mammalian sources and from Bacillus 
stearothermophilus in both native and inhi- 
bitor-bound forms (see, for example, Davies 
& Muirhead, 2002; Jeffery et al., 2000; Read 
et al., 2001; Sun et al., 1999). The protein 
architecture is essentially identical in 
mammalian PGIs and is highly similar in the 
enzyme from B. stearothermophilus. The 
structure comprises two domains, termed 
large and small, where each domain consists 
of a central ^-sheet surrounded by a-helices. 
The active site is located in a crevice 
between the large and small domains, near 
the subunit boundary. The enzyme form of 
human PGI exists as a dimer (Tilley et al., 
1974), but since it crystallizes as a monomer 
in the asymmetric unit a symmetry operation 
is required to generate the dimer. The active 
site comprises residues that are likely to play 
a role in the catalytic mechanism, including 
Glu357, Arg272, His388 and Lys518. One of 

these residues, His388, is contributed by the 
adjacent monomer. 

3.2. Ligand binding 

PAB is a competitive inhibitor of PGI that 
is believed to mimic the cw-enediolate 
intermediate of the catalytic reaction 
(Chirgwin & Noltmann, 1975). Our structure 
of human PGI in complex with PAB helps to 
further resolve the ambiguity regarding the 
binding mode of this inhibitor. The PAB 
molecule is bound to the active site in 
essentially an identical manner to that seen 
in equivalent complexes of PGI from rabbit 
(Jeffery et al., 2001) and pig (Davies & 
Muirhead, 2002), but the opposite of that 
seen in a complex with PGI from B. stearo- 
thermophilus (Chou et al., 2000) (Fig. 1). As 
expected, the sulfate molecule that was 
observed in the active site of the native 
structure (Read et al., 2001) has been 
displaced by the phosphate group of the 
PAB inhibitor. The phosphate group is 
oriented by the same cluster of serine and 
threonine side chains (Ser209, Thr211, 
Thr214 and Serl59) as well as the amide N 
atoms of Lys210 and Thr211 and by one 
water molecule to Thr217. Both the C2 and 
C3 hydroxyls (equivalent to C3 and C4 of 
the substrate) are within hydrogen-bonding 
distance of the amide group of GlylSS. This 
region of the inhibitor Ues close to the turn 
formed by Glyl57 and GlylSS and the 
absence of side chains in these positions 
facilitates a closer binding of the substrate. 
The monitoring of these two hydroxyls by 
GlylSS probably contributes to the high 

Lys210 

Arg272 

specificity of PGI for its sugar substrates. 
One of the side-chain O atoms of GIu357 
Ues close to OlA and Cl of PAB as well as 
to the guanidinium group of Arg272. This 
arrangement suggests that Glu357 is best 
placed to abstract a proton from the C2 and 
01 positions of G6P and F6P, respectively, as 
proposed recently (Lee et al., 2001; Read et 
al., 2001), and that the positive charge of 
Arg272 may stabilize the negative charge of 
the cix-enediolate intermediate. LysSlS and 
His3S8 both contact 04, which is equivalent 
to the ring oxygen of the substrate, and 
LysSlS also contacts OS. Either or both of 
these residues may participate in ring 
opening. 

3.3. Comparison with native human PGI 

IWo structures of human PGI have been 
published. The first of these contains a 
sulfate in the active site that appears to 
mimic the phosphate moiety of the substrate 
(Read et al., 2001), whereas the second 
structure is free of ligands and so better 
represents the true native state of the 
enzyme (Tanaka et al., 2002). Comparisons 
of the sulfate-bound structure with a ligand- 
free structure of rabbit PGI suggested that 
elements of the small domain shift from 
an 'open' to 'closed' conformation upon 
binding sulfate (Read et al., 2001). The 
hypothesis that the sulfate moiety was 
mimicking the sugar phosphate is confirmed 
by the human PAB-bound structure, in 
which the same region of the small domain is 
seen in the 'closed' conformation. In 
contrast, all four molecules present in the 

,Thr214 p,     \\p        ^Thr214 
Lys210|4   ^'/^^fy-,-^ 

Lys518 

Arg272 

His388# 

Figure 1 
5-Phosphoarabinonate bound to human phosphoglucose isomerase at 2.5 A resolution. A stereo picture of the 
active-site region, showing the 2(|F„| - \Fc\) electron density of the bound inhibitor, contoured in blue at Iff. The 
active-site residues and inhibitor molecules are shown in ball-and-stick form. The inhibitor is coloured red. This 
figure was prepared using PyMOL (DeLano, 2002). 
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Helix 17 

Figure 2 
Hie shift of a23 caused by the binding of 5- 
phosphoarabinonate. Shown is a backbone super- 
imposition of the sulfate-bound human structure 
(Read et al., 2001) coloured in orange and the PAB- 
bound structure in green. Important residues are 
shown in ball-and-stick representation, in which the 
bonds are coloured the same as the backbone. Note 
the rotation of the carboxylate of Glu357 and the 
slight shift of the adjacent residue, Gln353. For 
clarity, only heUces 23 and 17 are shown. This figure 
was prepared using MOLSCRIPT (Kraulis, 1991). 

Structure of a ligand-free hmnan PGI are 
seen in the 'open' conformation (Tanaka et 
al., 2002). 

The only other structural difference of 
significance is the shift of the N-terminal half 
of helix Q:23 (residues 512-520) toward the 
active site which occurs in the PAB-bound 

structure but in neither of the human native 
structures (Fig. 2). The same movement of 
a23 has been seen in the pig and rabbit 
homologues of PGI (Arsenieva & Jeffery, 
2002; Davies & Muirhead, 2002, 2003). The 
shift of Lys518 toward the active site and its 
close proximity to the ring oxygen is 
concordant with a role for this residue in 
ring opening. Interestingly, the carboxylate 
group of Glu357 rotates by approximately 
90° to align more closely with the carbox- 
ylate on the PAB molecule. In the case of the 
true substrate, a similar repositioning would 
enhance the abiUty of Glu357 to abstract a 
proton from the C1/C2 positions (Fig. 2). 

4. Conclusion 

The structure of human PGI bound to 
5-phosphoarabinonate further estabUshes 
Glu357 as the best candidate for base cata- 
lyst, as proposed recently (Lee et al, 2001; 
Read et al, 2001), supplanting earher 
suggestions that His388 was responsible 
(Chou et al, 2000; Jeffery et al, 2000). 
Instead, His388 is likely to be the acid 
catalyst for ring opening. The close proxi- 
mity of Lys518 to the ring oxygen and its 
shift towards the active site upon PAB 
binding suggest that it too has a role in the 
mechanism of ring opening. PGI is becoming 
increasingly better characterized as an 
enzyme, but much remains to be elucidated 
regarding its cytokine function. 
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